
A PORTABLE SPACEWIRE/RMAP CLASS LIBRARY FOR SCIENTIFIC
DETECTOR READ OUT SYSTEMS

Session: Onboard Equipment and Software

Short Paper

Takayuki Yuasa, Wataru Kokuyama, Kazuo Makishima, Kazuhiro Nakazawa
The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan 113-0033

Masaharu Nomachi,
Laboratory of Nuclear Studies, Graduate School of Science, Osaka University, 1-1

Machikaneyama, Toyonaka, Osaka 560-0043

Motohide Kokubun, Hirokazu Odaka, Takeshi Takashima, Tadayuki Takahashi
Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan
Aerospace Exploration Agnency (JAXA), 3-1-1 Yoshinodai, Sagamihara, Kanagawa Japan 229-8510

E-mail: yuasa@amalthea.phys.s.u-tokyo.ac.jp, kokuyama@granite.phys.s.u-tokyo.ac.jp,

maxima@phys.s.u-tokyo.ac.jp, nakazawa@phys.s.u-tokyo.ac.jp,

nomachi@fn.lns.sci.osaka-u.ac.jp, kokubun@astro.isas.jaxa.jp, odaka@astro.isas.jaxa.jp,
ttakeshi@stp.isas.jaxa.jp, takahasi@astro.isas.jaxa.jp

ABSTRACT
We developed a C++ class library which provides modularized scheme to transfer
data via RMAP over SpaceWire. The library is designed to be highly portable so that
users can execute their products using it on both POSIX (eg. Linux or MacOS X) and
TRON environments. TRON is a real-time operating system that is widely adopted in
embedded computers, and will also be used on computers, called SpaceCube, to be
onboard Japanese scientific satellites. To achieve the portability, we encapsulated
hardware- and operating-system-dependent functionalities such as SpaceWire I/F, a
multi threading framework, as well as a TCP/IP socket implemented for development
phases of scientific payloads.

1 SPACEWIRE/RMAP LIBRARY

1.1 SPACEWIRE-BASED DATA ACQUISITION SYSTEM

We are developing a new data acquisition (DAQ) system based on SpaceWire
and RMAP (Remote Memory Access Protocol) to be widely used in future satellite-
borne scientific instrument developments [1,2]. Compared to conventional systems, a
SpaceWire network-based DAQ system has features of high scalability and
compactness. Using SpaceWire I/F from early stages of developments will enable
smooth transition from R&D phase to actual fabrication and integration of the flight
hardware. To reduce costs of individual developers, a standard framework for
SpaceWire-based DAQ has been developed and distributed by Japan SpaceWire
Users Group which consists of research institutes (including JAXA and universities),
and industrial enterprises.

Figure 2. Structure of SpaceWire/
RMAP Library.

As shown in Figure 1, present DAQ system consists of the following three
components.

- Detector: Outputs analog or digital signals. Controlled through specific interfaces.
- SpaceWire I/F Circuit Board: Digitizes and stores output signals to make them
accessible from SpaceWire network through their SpaceWire interfaces. Equipped
with reconfigurable FPGAs to implement user-dependent logics for detector control
and signal processing.
- SpaceCube: Small-sized computer with SpaceWire interfaces. Operated with a real-
time operating system, on which user-dependent read-out programs written in C/C++
runs. "SpaceCube" is a name of the architecture, not a product name.

Detectors are designed and developed by individual users. Several types of
general-purpose SpaceWire I/F circuit boards have been developed each with
different functionality such as analog-to-digital conversion (ADC) and digital
input/output. As SpaceCube computer, we usually use SpaceCube1 developed by
Shimafuji Electric for ground-based experiments. Currently available space-qualified
SpaceCube computers include SpaceCube2 (NEC) and SpaceCard (Mitsubishi Heavy
Industrial).

1.2 CONCEPT AND STRUCTURE OF SPACEWIRE/RMAP LIBRARY
 Individual instrument developments need their own read-out program to
perform different SpaceWire and RMAP accesses. However, basic functions needed
therein are essentially the same; examples include send/receive packets and
interpret/create RMAP packets. Therefore we developed a common software library
scheme to deal with SpaceWire/RMAP-related functions, called SpaceWire/RMAP
Library. It is designed to be modularized and portable, to improve re-usability of
products and to make validation processes easier. Since ground-based and spacecraft-
borne SpaceCube computers could have different operating systems, dependencies on
the hardware and operating system are carefully minimized.

 The library is written in C++ language,
and has no dependency on external library
except for STL (Standard Template Library;
widely available in many operating systems
and compilers). Figure 2 shows the whole
structure of the library. SpaceWire I/F class is
an abstract wrapper class for SpaceWire I/F
hardware and drivers loaded in operating
system kernels. It holds virtual methods for
device initialization/finalization
(open()/close()), packet transfer
(send()/receive()), and device configuration
(setLinkStatus()). Actual SpaceWire
interfaces can be utilized by filling each virtual method with codes specific to those
devices. Currently, two types of implementations of SpaceWireIF class are available,

Figure 1. Components used in SpaceWire-based data acquisition
systems.

- Thread Library
- Thread class
- Condition class
- Mutex class
- Message class

- IP Socket Library
- IPSocket class
- IPClientSocket class
- IPServerSocket class

Table 1. Contents of Thread and IP
Socket Libraries.

each for SpaceWire interfaces (or IP cores) developed by Shimafuji Electric and by
NEC Software, respectively.

 RMAP transaction is realized by two conjunct classes, RMAPSocket and
RMAPEngine. RMAPSocket, which corresponds to socket in a TCP/IP protocol
stack, provides read() and write() methods for user application to perform RMAP
transactions to a designated RMAP destination node. RMAPEngine handles requests
from multiple RMAPSockets and realizes concurrent multiple RMAP transactions (to
different RMAP nodes) in multi-threading environments. RMAP packets, errors, and
destination information including routing pathways, are also expressed as classes.

 A DAQ read-out program often uses multi
threading and TCP/IP data transfer. Although those
functions have less relevance to SpaceWire or
RMAP, we also included them into the library as
encapsulating classes, called Thread Library and IP
Socket Library, referring to Java Thread and Socket
in their naming style. Table 1 lists classes included
in these libraries. At present, these libraries provide
implementation classes for POSIX and T-Kernel1
environments, and therefore, ensure a high
portability of the programs developed using these
libraries. In section 2.2, we present an example of the portability by executing a multi-
thread read-out program on both Macintosh (POSIX) and SpaceCube1 (T-Kernel)
without changing the source code.

1.3 CURRENT STATUS OF THE LIBRARY

The total size of SpaceWire/RMAP Library and sub-libraries is about 300,000-
line C++ code, including in-source documentation for automatic document generators
such as Doxygen or Javadoc. The source code archive is distributed through Japan
SpaceWire Users Group, toghether with the Shimafuji Electric's driver software for
SpaceWire I/F IP core on SpaceCube12. GNU Compiler Collection's C++ compiler
(GCC g++) can be used to build the library and read-out programs. Since an HTML-
based reference of the application programming interface (in English) and an
introductory tutorial (in Japanese) are also available, users can start developments
immediately. The library has been used in several detector development activities,
including the X-ray CCD and the X-ray micro-calorimeter experiments onboard the
ASTRO-H satellite, the next generation Japanese X-ray astrophysical observatoryto
be launched around 2013.

2 PERFORMANCE AND AN EXAMPLE OF APPLICATION

2.1 TRANSFER SPEED

We measured the data transfer speed using SpaceCube1, implemented with
Shimafuji Electric SpaceWire IP core and the SpaceWire/RMAP Library. In hardware
(physical) layer, the IP core exploits about 80% of link speed; for example, 80 Mbps
can be achieved over a 100 MHz link. Overhead time of the host I/F (PCI I/F) and the

1 T-Kernel is one kind of implementation of TRON operating systems.
2 Which will be released as an open source product in the near future at http://www.shimafuji.co.jp/ .

driver software reduce the speed to about 32 Mbps (in SpaceWireIF class layer). We
also tested practical end-to-end data transfer speed between a RAM on SpaceWire I/F
circuit board and a read-out program on SpaceCube1. The SpaceWire I/F circuit board
acts as an RMAP target device, and the read-out program utilizes full features of
SpaceWire/RMAP Library, such as the concurrent multiple transaction with
RMAPSocket and RMAPEngine. When we transferred data with a packet size of 8 kB,
the transfer speed of 8 Mbps was obtained.

2.2 EXAMPLE APPLICATION

We applied the SpaceWire/RMAP Library to a simple ground experiment setup.
The detector consists of two photo-multiplier tubes (PMTs) with inorganic
scintillators and amplifiers attached to them. The SpaceWire I/F circuit board in this
case is a octal 50 MHz ADC board, which is controlled and read-out via its
SpaceWire I/F. Using SpaceWire/RMAP Library, we developed a read-out program
initially for SpaceCube1. To examine the portability, we then built the same source
code with a C++ compiler for MacOS X (g++), and executed the generated binary on
Macintosh. Since a SpaceWire I/F for Macintosh was not available at that time, the
program used the SpaceCube's SpaceWire I/F via TCP/IP. To realize a SpaceWire-to-
TCP/IP converter, we also executed a converter server daemon program on the
SpaceCube3.

The read-out program executed on Macintosh communicates with the
SpaceCube via TCP/IP to send/receive SpaceWire packets to/from SpaceWire ADC
Box (Figure 3). Such procedures are automatically performed inside the library, and
hence, the read-out program need not to be modified. The total DAQ system was also
successfully operated in the same way as on SpaceCube1, and correctly transferred
700,000 events with an event size of 10 bytes/event each in 5 minutes in a test
measurement wherein we irradiated the detector with gamma rays from radioisotopes.

3 REFERENCES
1. Takayuki Yuasa et al., “Development of a SpW/RMAP-based Data Acquisition

Framework for Scientific Detector Applications”, International SpaceWire
Conference, Dundee, Scotland, September 2007

2. Hirokazu Odaka et al., “Development of a SpaceWire-based Data Acquisition
System for a Semiconductor Compton Camera”, International SpaceWire
Conference, Dundee, Scotland, September 2007

3 The SpaceWire-to-TCP/IP converter program for SpaceCube1 is also included in the library package.

Figure 3. A block diagram of test measurements.

